Whitewater Kayak Slalom Race Timer - Simon Fraser University

Whitewater Kayak Slalom Race Timer - Simon Fraser University

Whitewater Kayak Slalom Race Timer Engineers: Kevin Lockwood Chris Munshaw Ashley Penna John So

Project Funded By: Mike Neckar Founder, Necky Kayaks www.necky.com Background on Whitewater Kayaking Whitewater kayak slalom racing began shortly before World War II

This Olympic sport involves racers paddling down a natural or man-made rive Kayakers must maneuver through hanging pairs of gates. Judges at shoreline determine correct maneuvering through gates. Background on Whitewater

Kayaking C1 (Canoe) on a man-made course Background on Whitewater Kayaking K1 (Kayak) on a natural river course

Kayak Rules The racer must proceed through green gates in the down-river direction Red gates in the up-river direction 2sec penalty for touch gates but going through 50sec penalty for touch and not gone through

Present Situation Judge watching at each gate to make sure the kayaker goes though Judge determining if each gate has been touched Stop-watches used in training for timing Obvious problems: Human error, biases, judges not omniscient

Our Solution Create a automated system which tracks a kayakers progress through a race course and determines if gates are touched. Focus on creating a reliable and low cost product. Offset the cost of using humans to judge gates.

Secondary goal is timing accuracy. Marketing Mr. Neckar - use for training by olympic athletes - introduced in races such as national team trials (Vedder River, Chilliwack) Scott Shipley, US national team member

- promotion in the United States Timeline Overall, we are behind the proposed schedule by about two weeks. Our Proposed Timeline 1-Jan-07 Rese arch Proposal

Functional Spe cification De sign Spe cification Assembly of M odules Inte gration/Prototype Testing Debugging/Prototype Modification Docume ntation Progress Re port 16-Jan-07 31-Jan-07 15-Feb-07

2-M ar-07 17-M ar-07 1-Apr-07 16-Apr-07

Delays are caused by Waiting for sensors, microcontrollers, and RF modules to arrive. Testing other design options. Errors and bugs Underestimated Integration Time Earlier than expected deadline Timeline

The Actual Timeline System Overview How to detect a Kayaker? Ultrasonic beam across the gates RF tag triangulation

IR beam across the gates Ultrasonic Beam Advantages not affected by environment low noise low power consumption

Disadvantages wide beam difficult to integrate multiple ultrasonic sensors due to coupled interference RF Tag

Advantages Very hard to cheat the technology Low power Disadvantages Difficult technology to use Requires a high computational load to

calculate location Can be expensive Optical Beam (Our Solution) Advantages Narrow beam Easy to implement Unaffected by

environment Lower costs Disadvantages Consumes higher power the ultrasonic Sensitive to alignment IR LED vs. Laser

Laser (Visible Spectrum) 650nm - coupled with a photodetector + amplifier - very high signal strength at large distances (5m +) - very narrow viewing angle - low power consumption (~20mA) - class III and above can cause retinal damage IR LED vs. Laser IR LED 950nm

- coupled with an NPN phototransistor - very low signal strength at distances over 2m (required amplification) - wide viewing angle (35) minimizing problem of gate flexibility - high power consumption (~100mA) - cannot cause retinal damage IR LED: Improving Signal Quality Ambient light shielding

- used a non-reflective black paint to coat a drinking straw (this also formed a water-tight seal over the phototransistor) Modulation - modulated the IR emitter with a 2kHz square wave - demodulating at the receiving side would filter out noise cause by reflections of sunlight off water, etc IR LED: Improving Signal Quality Ambient light shielding

- used a non-reflective black paint to coat a drinking straw (this also formed a water-tight seal over the phototransistor) Modulation - modulated the IR emitter with a 2kHz square wave - demodulating at the receiving side would filter out noise cause by reflections of sunlight off water, etc IR LED: Overall System Amplification -> Filtering -> Thresholding - Amplification boosts the output signal strength

- Filtering creates a steady signal representing the amount of IR light detected - Thresholding creates a digital signal representing whether or not the line of sight is considered broken IR LED: Modulation Decreased average current consumption from 180mA overall to 110mA overall. Waveform created using an astable 555 timer

Simulation on breadboard IR LED: Demodulation Filtered using an LRC circuit, tuned to 2kHz IR LED: Final Signal

Accelerometer Used to detect any contact with the gate 3 axis, 5g output range Mounted 1 accelerometer per gate, in the lower region of the gate (added sensitivity) Accelerometer: Signal Conditioning Low Pass Filter: allows us to dull the signal and remove unwanted noise

Comparator: gives a digital signal representing whether or not the acceleration of the gate is beyond an acceptable level -> this allows us to have the system ignore low acceleration conditions such as gates swaying in the wind Accelerometer Performance Tests Comparator Threshold = 1.665V

(red line in graph) Future Improvements on Signal Conditioning Have circuits printed on PCB Use only variable resistors reference voltages in comparators Improve demodulation circuit, possibly using an active filter

Final Sensor Signals Two digital signals representing the clearance of a gate, and contact with a gate (both fully adjustable) However, current consumption is becoming high (approx. 180mA) This leads us to attempt Presence Detection

Presence Detection Used to detect the presence of an approaching kayaker. Used to trigger the turn on high power consuming subsystem. Used Ultrasonic sensors Accuracy Immunity

Ease Presence Detection The sensors have an analog output proportional to the distance of an object. Used thresholding to detect object presence

Used timing circuit to filter noise. Presense Detection Future Upgrades Currently we do not have a way to detect which direction the kayaker came from. Gates are direction dependant

according to whitewater kayak Rules. We will switch to IR presence detection, due to better immunity to environment. Will use one facing each direction in gate to determine direction of approach.

Data Communication Requirements Reliable Long Range Low Power Fast Transmission Data Communication Solution

ZigBee Xbee Module from Maxstream 30m range (upgrade 1mile) Current Consumption during Transmission 45mA UART Communication Format easy to integrate with our Micro Controller Data Communication Future Updates

We can upgrade to Xbee Pro modules for an increased range. Requires more power. Allow software to communication back to gates. Remote reconfiguration Remote turn on/off

MicroController Firmware Requirements Very little memory needed Simple program USART Register for RF Modules A/D Conversion capabilities At least 3 inputs (IR Sensors, Ultrasonic, Accelerometer) MicroController Firmware

Main Jobs Get a development environment running Integration with ultrasonic to turn on power board Integration with IR sensors Integration with RF modules MicroController Firmware Multiple Development

Environments 1) PICDEM 1st to work MicroController Firmware Good Features Easy viewing of ports Attached LEDs to

eliminate the need to probe Multiple ways to power MPLab compatibility Problematic Features

Had to replace 40pin socket Initial running of programs Quantity MicroController Firmware Multiple Development Environments 2) OUMEX

2nd to work MicroController Firmware Good Features One LED to map outputs of interest to Programming capabilities using

MPLab Less reliance on development board Problematic Features Building a cable from MPLab to ICSP

Initial running of programs Quantity shipping time MicroController Firmware Multiple Development Environments 3) Prototype

Last and finally!!! MicroController Firmware Good Features Cheap Space saving Easy connection to other circuits

Problematic Features Must move to another development board to program Determining which components were necessary

MicroController Firmware IR Flag gets set in an interrupt Accelerometer Flag gets set in an interrupt

MicroController Firmware Ultrasonic Powering Sensor Circuit Creates an interrupt which sets a flag Main program deals with this Output will be high when ultrasonic is high IR sensors Circuit Creates an interrupt which sets a flag In main program, transmission showing the

gate number and IR occurs MicroController Firmware Future Improvements Automatic Gate Addressing Sleep pins on the RF module Polling gates for possible battery voltage The Power

IR sensors consume around 150mA. Portable/Inexpensive power source in a 9v battery Provide clean power at 3v and 5v for all subsystems. Supply should last for

8hrs of use Power Solution Isolated control directly from Micro Controller. Micro Controller uses the low power Ultra Sonic sensors to trigger IR sensor circuit.

Circuit Board contains controlled outputs at 3v and 5v for high power, and continuous outputs of 3v and 5v. Power Solution We want our portable power supplies to last 8 hours of continuous usage

System Power Consumption Before Power Control Total Power Required = 1.21Ahr System Power Consumption After Power Control Total Power Required = 0.511Ahr

Power Solution Without a controlled power supply for 8hrs of continuous use requires 1.21Ahr With a controlled power supply for 8hrs Of continuous use requires 0.511Ahr Saves nearly 250% of our AmpHours required. Improves portable power supply options.

Power Solution We use two Rayovac 9v Alkaline batteries in parallel for each gate Batteries spec at -30C to 55C Each Battery has approx. 0.5Ahr Graphical User Interface Graphical User Interface

Purpose: Allows user to set up a race quickly. Communicates with the RF module and collects data from gates. Displays data in table form. Automatically times the race and applies penalties. Graphical User Interface

Functions: Kayaker list management. Add and remove kayakers. Modify number of gates. File I/O Display data: Names Race Time Penalties applied to each gate

Graphical User Interface Program flow 1. User adds the names of kayakers in order. 2. User determines the number of gates. 3. User modifies the serial port settings. Step 1, 2 and 3 are interchangeable. 4. User presses Begin button to begin the race. Name list and gate number cannot be

modified from this point onwards. Graphical User Interface Program flow (continued) 5. Program reads and displays data automatically. - Decodes gate messages sent through RF module - Applies 2 sec time penalty if gate touched.

- Applies 50 sec time penalty if gate missed. 6. Calculate race time and add penalties to it. 7. Table may be exported in .txt format and uploaded to MS Excel. Graphical User Interface Problems encountered: Exception handling Symbol error due to baud rate mismatch

Repeated messages from gates Timing delay Graphical User Interface Future Improvements: Time delay calculation Support multiple kayakers on the course Name list sorting Automatic available port detection

Summary Created a automated system which tracks a kayakers progress through a race course and determines if gates are touched. Focus on creating a reliable and low cost product. Offset the cost of using humans to judge gates.

Increased timing accuracy The End Questions? Appendix: Signal Conditioning Appendix: Modulation

Emitter: (Breadboard) Appendix: Modulation Receiver, modulated: (Breadboard) Appendix: Demodulation RLC Bandpass Filter sCR H(s)= 2

s CL sCR 1 Using R=1, C=6.33uF, L=1mH Appendix: Demodulation Appendix: Demodulation Receiver, de-modulated: (Breadboard)

Appendix: UltraSonic Circuit Used a simple LM324 OpAmp with a threshold voltage. Threshold set to approx. 5.5ft. 555 Monostable Timing circuit holds detection high for 5sec. This filters the natural circuit noise from the ultrasonic sensor.

Appendix: Ultrasonic Circuit Appendix: Power Requirments Before Power Control Continuous Power Consumption 110mA (IR circuit) + 15mA (Ultrasonic) + 25mA (Micro) = 150mA RF Consumption

(150 trans. [email protected] 0.5 sec/trans) = 0.9mA Total Power Required = 1.21Ahr After Power Control Continuous Consumption 15mA (Ultrasonic) + 25mA (Micro) = 40mA IR Consumption 110mA (150 passes. [email protected] 5 sec/pass) =23mA

RF Consumption 45mA (150 trans. [email protected] 0.5 sec/trans) =0.9mA Total Power Required = 0.511Ahr Appendix: Power Circuit Appendix: Power Circuit Lag (4ms)

Appendix: Transmission Appendix: Transmission Appendix: Transmission Time

Recently Viewed Presentations

  • 1st Grade

    1st Grade

    Sing! Composer: Joe Raposo Denyce Graves sing Sing! (link to Sesame Street.org) Sand animals sing Sing! (link to Sesame Street.org) Sing! Sing, sing a song Sing out loud Sing out strong Sing of good things not bad Sing of happy...
  • Whose Claim, to What Right? - Neo-Federalism

    Whose Claim, to What Right? - Neo-Federalism

    Whose Claim, to What Right? A Taxonomy of the Self-Determination Genus. Tom Sparks. University of Durham. [email protected] The research leading to this presentation has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) -...
  • 3rd governing board assembly 8-10 July 2013, ENEA,

    3rd governing board assembly 8-10 July 2013, ENEA,

    services for impacts and climate change adaptation in coastal zones of north adriatic. discussion on . climate products. isinformation providedunderstandable? ... in northern Italy a research project is trying to create a repository of daily data since 1960.
  • GEORGIA Department of Corrections GEORGIA GEORGIA GEORGIA GEORGIA

    GEORGIA Department of Corrections GEORGIA GEORGIA GEORGIA GEORGIA

    Arial Times New Roman Arial Black Calibri Default Design Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Supervision Levels and Statuses Slide 8 Slide 9 Probation Reporting Contact Center Concept Features PRCC Flow - Eventful Report...
  • 528th Engineer Battalion - Louisiana National Guard

    528th Engineer Battalion - Louisiana National Guard

    The Unit Risk Inventories (URI) and Reintegration Unit Risk Inventories (R-URI) allow Commanders to understand the high-risk behaviors that are prevalent among Soldiers in their units. The surveys help ADCOs, PCs, and Leaders target appropriate intervention strategies where they are...
  • HEMS @ www.AviationWeather.gov

    HEMS @ www.AviationWeather.gov

    LAMP vs RTMA: LAMP does not capture all scenarios - it handles fog, but not always lower cigs/vsbys due to precipitation . LAMP is interpolated from GFS MOS data points - so it's easier to miss lower cigs/vsbys. LAMP also...
  • Plant of the Day Nymphaea thermarum is the

    Plant of the Day Nymphaea thermarum is the

    Nymphaea thermarum is the world's smallest water lily (lily pads about 1cm) Self compatible Discovered in 1987 Extinct from the wild (habitat destruction)
  • Intersectionality: A Gifted Contribution to University Life ...

    Intersectionality: A Gifted Contribution to University Life ...

    Intersectionality …as a way of understanding and analysing the complexity in the world, in people, and in human experiences… When it comes to social inequality, people's lives and the organisation of social power in a given society are better understood...