The Respiratory System

The Respiratory System

THE RESPIRATORY SYSTEM UEQ: How do we exchange oxygen to and carbon dioxide from the human body? What is the respiratory system? The system that brings oxygen into the body and expels carbon dioxide out of the body. ensures that during inspiration, or inhalation, air is

brought from the atmosphere to the lungs by a series of cavities, tubes and openings. ensures that during expiration, or exhalation, air is pushed out of the lungs into the atmosphere using the same structures. THINK ABOUT IT: WHAT ORGANS ARE APART OF THE UPPER RESPIRATORY

TRACT? Major Organs Nose Nasal cavities Paranasal sinuses Pharynx, or throat Accessory Oral cavity , or Organs mouth

The Upper Respiratory Tract The nose Bone and cartilage support the nose internally Two nostrils or nares

Air enters and leaves through here Internal hairs guard nostrils Prevents larger particles carried in air The nasal cavities Hollow space behind the nose

Divided into narrow canals separated from each other by cartilage and bone nasal septum. Nasal conchae bones and bony processes that divide the cavity into passageways Support the mucous membrane Increases surface area Pseudostratified ciliated columnar epithelium Secretes mucous from goblet cells Water evaporates from this lining moistening the air Mucus traps debris coming in with the air Lined with blood vessels As air enters, heat from blood transfers to air and warms it Adjusts air temp to body temp

Paranasal sinuses Air filled spaces within the frontal, ethmoid, sphenoid and maxillary bones of the skull and opening into the nasal cavity. Lined with mucous membranes continuous with the lining of the nasal

cavity Reduce the weight of the skull Resonance chambers that affect quality of voice Pharynx, or Throat Funnel shaped passage way that connects the nasal and oral

cavities to the larynx Passage way for food moving to esophagus, and air moving to the larynx Helps to produce sound of speech Has three parts: 1. Nasopharynx: where the nasal cavities open above the soft palate 2. Oropharynx: where the oral cavity opens 3. Laryngopharynx: area that opens up into the larynx Pathway of air through

the upper respiratory system. REMEMBER!!!! Each time that you take a breath, there are three very important things that happen. 1. The air that you breathe in is cleaned by tiny hairs in your nose, trapping little bits of dirt and dust and germs that come in through your nose. 2. As you breathe, the air is made slightly wet. Your nose having damp passages does this. 3. The next thing that takes place when air enters your nose is that the air is warmed. This happens because the blood flows through the lining of the nose and gives off heat.

Snot and more.. Protecting us from harm Snot: "Snot", is just another word for mucus. When bits of stuff get stuck in your nose hairs, its the mucus or snot that surrounds the stuff and traps it. Boogers: Boogers are dried-up snot and dirty nose debris. Encrusted mucus is filled with the junk thats in the air you breathe - dust, pollen, germs, sand,

fungi, smoke, small particles from outer space. AND NOW FOR THE MUCUS MODEL Achoo Mucus model? How does it compare to the real thing?

Model made up of gelatin (protein) and corn syrup (sugar) Mucus is made mostly of sugars and protein. The long, fine strings you could see inside your fake snot when you moved it around are protein strands. These protein strands make snot sticky and capable of stretching CHECK IT! Complete the questions for a stamp..

THINK ABOUT IT: WHAT ORGANS ARE APART OF THE LOWER RESPIRATORY TRACT? Major Organs Larynx, or voicebox Trachea, or windpipe The bronchial tree The lungs

Accessory Organs Glottis epiglottis Diaphragm The Lower Respiratory System Larynx, or voicebox

Cartilaginous structure that serves as a passageway for air between the pharynx and trachea. A triangular box top of the triangle is located to the front of the neck (Adams apple) Framework of muscles and cartilage Thyroid cartilage Cricoid cartilage Epiglottic cartilage

Houses the vocal cords Allows for air in and out of the trachea Prevents foreign objects entering into trachea Vocal Cords Vocal folds

False vocal cords Composed of muscle tissue and connective tissue Covered with mucous membrane Upper folds Do not produce sound Muscle fibers help close airway when swallowing True vocal cords

Muscle tissue and elastic fibers Forced air between TVC causes them to vibrate and produce sound Words = changing shapes of pharynx, oral cavity; and use of the tongue Pitch= contracting or relaxing muscles that alter tension Glottis

Opening between vocal cords Durning normal breathing, relaxed vocal cords, the glottis opens During swallowing/ eating, muscles around the false vocal cords contract, the glottis closes. Epiglottis

A flap of soft tissue above the vocal cords The larnyx will move upward against the epiglottis when swallowing to prevent food, water and saliva from entering the lungs. The trachea, or windpipe A tube that connects the larynx to the

primary bronchi Walls consist of connective tissue and smooth muscle Reinforced by c-shaped cartilaginous rings Lies anterior to the esophagus Prevents the trachea from collapsing Soft tissue that completes the c-rings, allow for

esophagus to expand as food moves through The outermost layer of the mucous membrane that lines the trachea is pseudostratified columnar epithelium with goblet cells. Traps particles and moves it upwards to pharynx to be swallowed The Bronchial Tree

Tubes that allow air to pass through, and are reinforced with cartilaginous rings, like the trachea. Divided into the left and right primary bronchi, which lead into the lungs Divison is located in the mediastinum, approximately at the level of the 5th thoracic vertebrae Branch into the secondary bronchi tertiary bronchi keep dividing until they are about 1 mm in diameter Bronchi that are 1 mm in diameter are called

bronchioles Terminal bronchioles Respiratory bronchioles Alveolar ducts Alveolar sacs Alveoli The Lungs Paired, cone-shaped organs

Separated by the mediastinum Diaphragm and rib cage enclose them Suspended by the bronchus and major blood vessels Visceral pleura surrounds each lung Continues to the parietal pleura which attaches and surounds the throacic cavity

Potential space between the pleura = pleural cavity Filled with serous fluid Reduces friciton of lungs moving against the thoracic cavity during breathing Right lung has three lobes, the left lung only two due to the heart pointing towards the left Broken even further into lobules, which house bronchioles serving the alveoli The Alveoli

Lungs have about 300 million alveoli Each alveoli sac is surrounded by blood capillaries Made up of simple squamous epithelium This is the site where gas exchange happens Be sure to complete the following

Your check it questions The diagram at the back of the packet WARM UP! Why is it important for the capillaries from the cardiovascular system to be numerous and surround the alveoli? When

finished with the question, take a moment and breathe notice what Cardio/ Respiratory connection Oxygen diffuses from alveolar walls and enters the blood.(where it can now go to other cells in the body)

Carbon Dioxide diffuses from the blood through the walls and enters the alveoli. (where it can be exhaled and released) Alveoli Exchange of Gases: Using the picture below EXPLAIN the gas exchange process: Why do the blood cells start blue and then turn red? CHECK IT! Breathing, or ventilation

Has two phases Inspiration moving air into the lungs Expiration moving air out of the lungs Inspiration Active phase of ventilation

In this phase the diaphragm and muscles of the ribcage contract diaphragm moves downward and looks flattened The volume of the thoracic cavity will increase, so does the lung volume The pressure within the alveoli is less than the pressure outside in the atmosphere. There is a difference in pressure (or pressure gradient) and air will move into the body naturally. Pressure and volume have an inverse relationship

Pressure inside the lungs and alveoli decrease, atmospheric pressure will push outside air into airways During this time the pressure in the

alveoli drops 2mmHg below atmospheric pressure In response, atmospheric pressure forces air into the airways The external intercostal muscles between ribs are stimulated and move the ribs and sternum upwards Enlarges thoracic cavity even further Internal pressure is further reduced; increases amount of air into the lungs

Water within the serous fluid found in between the visceral and parietal pleura creates an attraction between the pleura, and the membranes move upward during inspiration This expands the lung in all directions.

Too much water in the alveolar sacs creates a surface tension that may collapse the alveoli. Certain cells within the alveoli secrete a surfactant lipids and proteins Fills the alveolar air spaces reducing the tendency to collaspe, especially when lung volumes are low Makes it easier to inflate alveoli Expiration

Passive phase of ventilation Come from elastic recoil and surface tension No effort is required for air to leave the body Diaphragm and muscles of the ribcage relax diaphragm looks cone shaped

Pressure within the alveoli increases to about 1mmHg above atmospheric pressure Forces the air out of the lungs The volume of the thoracic cavity will decrease, so does the lung volume Maximum inspiration and forced expiration MAXIMUM INSPIRATION

Involves muscles of the back, chest, and neck Thoracic cavity increases more than normal, for maximum lung capacity Usually during exercise FORCED EXPIRATION

Contraction of the ribcage muscles forces the ribcage to move downward and inward Involves the abdominal muscles pushing against the abdominal organs which pushes against the diaphragm, pushing more out of the lungs Usually during exercise, singing, playing an

instrument, or blowing out a candle CHECK IT! And then the activity. Volumes of Air in the Lungs Warm UP: Are our lungs ever void of air? Why or why not? Volumes of air within the lungs during ventilation

Why do we need to know this? Knowing the amounts of air in the lungs and how it flows through the respiratory system helps to diagnose respiratory issues Respiratory Air Volumes and Capacities Spirometry is the test that measures air volumes in or out of the lungs.

Three distinct repiratory volumes can be measured: Resting Tidal volume Inspiratory reserve volume Expiratory reserve volume One inspiration + one expiration = respiratory cycle. Air that enters of leaves during a respiratory cycle is the tidal volume

Respiratory cycle: One inspiration plus one expiriation. (Breathe in- breathe out) 1. Resting Tidal volume- the normal amount of air that enters the lungs and leaves the lungs during a respiratory cycle. The average is about 500 milliliters of air per breath in and the same amount out.

During Tidal volume you do not use the total amount of space in your lungs! They only use about 75-80% 2.

3. Inspiratory Reserve Volume: When you take a deep breath in to hold more air than a usual breath. Forced inhalation. Expiratory Reserve Volume: Forced expiration. Expelling air beyond the tidal volume. Even after the most forceful exhale however you still have air left in your lungs. This left over air is called the Residual Volume.

4. 2. 1. 5. 3. 6. 4. 5.

Vital Capacity: Combining the tidal volume with both the inspiratory reserve volume and the expiratory reserve volume. Total Lung Capacity: The vital capacity plus the residual volume. All the possible air that can come into or out of the lungs, including the air that never leaves the lungs. Fill in the following table with the appropriate terms: Respiratory centers and control of breathing Medullary respiratory

center- controls both inspiration and expiration Found within the pons and medulla oblongata Medulla oblongata has two groups

Ventral respiratory group controls basic rhythm Dorsal respiratory groupcontrols the diaphragm Factors that Affect breathing flow charts.. CHECK IT! PP. 456- 458 Create flow charts for the following factors that affect breathing

CO2 levels O2 levels Depth of breathing Emotional upset Holding your breath Hyperventilation HOW AND WHY GAS EXCHANGE HAPPENS: Location: The alveoli Method: Diffusion

Partial pressure: In a mixture of gases such as air or blood, each gas accounts for a portion of the total pressure the mixture produces. The amount of pressure each gas contributes is the partial pressure. Diffusion of Gases: When blood reaches the alveolus / lungs the blood is oxygen poor- it has depleted its oxygen source to the rest of the body and needs to pick up more.

Diffusion of Gases: Due to the pressure gradient, oxygen will move from the alveoli to the blood stream. In other words, there is more oxygen in the alveoli than the bloodstream, so oxygen will naturally move into the bloodstream. So what about Carbon Dioxide? Carbon dioxide will be or

higher lower in the bloodstream. Carbon dioxide will move or into out the bloodstream of into the alveoli where it will be expelled out of the body.

Color and label the diagram GAS TRANSPORT Factors affecting release of O2 Increase in CO2 concentration= increase in O2 release If blood Becomes acidic Temperate increases More O2 is released to

skeletal muscle during physical activity; less O2 released to non active cells HYPOXIA deficiency of O2 reaching tissues GAS TRANSPORT - OXYGEN OXYHEMOGLOBIN PO2is high oxygen 98% of oxygen in dissolves in blood and blood binds to combines with

hemoglobin hemoglobin to form a protein in red blood oxyhemoglobin Unstable bonding cells that carries As PO2 decreases in the oxygen body, O2 is released from oxyhemoglobin O2 diffues across the membrane of cells to be used in cellular respiration HEMOGLOBIN

CO2 Transport Capillary blood gains CO2, as tissues have increased levels of PCO2 Transported in three ways to the lungs: Dissolved in plasma Bound to hemoglobin Bicarbonate ions Amount of CO2 dissolved in plasma dependent on its partial pressure Increased PCO2 = more CO2 in solution Only 7% of CO2 transports in this form

GAS TRANSPORT Carbaminohemoglobi n CO2 loosely bonds with hemoglobin = carbaminohemoglobin Decomposes readily in regions of low PCO2 releasing CO2 Only about 23% of the CO2 carried in the blood is formed in molecule, as this

reaction happens slowly Bicarbonate Ions Most important CO2 transport mechanism CO2+ H2O => H2CO3 (carbonic acid) Occurs slowly in plasma Carbonic anhydrase speeds up reaction, releasing H+ and HCO3(bicarbonate ions) Bicarbonate ions diffuse into the plasma 70% of all CO2 in blood is

transported this way CO2 Transport Continued Plasma release CO2 Dissolved CO2 diffuses into the alveoli (alveoli PCO2 is low Bicarbonate Ions Release CO2 As blood passes through the capillaries of the lungs At same time H+ and HCO3- combine to make H2CO3 under influence of carbonic anhydrase H2CO3 breaks down quickly to form CO2 and

H2O CO2 then diffuses into the alveolus CO2 Transport Continued Carbaminohemoglobin release of CO2 As blood passes through the capillaries of the lungs Release of CO2 happens Will continue until PCO2 of blood and alveolar air are at equilibrium

Recently Viewed Presentations

  • A View of Life - City University of New York

    A View of Life - City University of New York

    Regulation of gas exchange through the leaf is the responsibility of the guard cells. Organization of Leaves Outline Plant Organs Roots Stems Leaves Monocots vs. Eudicots Epidermal Tissue Vascular Tissue Roots Organization Diversity Stems Organization Diversity Leaves Organization Diversity Plant...
  • Module 3: Stewardship in Skin and Soft Tissue Infections

    Module 3: Stewardship in Skin and Soft Tissue Infections

    CT and/or MRI may show fluid along fascial planes, fascial enhancement, or gas in tissues20,21. ... Clinical impression should drive surgical decision making. Small incisions in area of concern made; if no fascial sloughing, necrosis or dehiscence, extensive debridement is...
  • ESL Teacher Collaboration with School Personnel Through Technology:

    ESL Teacher Collaboration with School Personnel Through Technology:

    Wiki . example. A wiki is a website that allows the creation and editing of any number of interlinked web pages via a web browser using a simplified markup language or a WYSIWYG text editor. Wikis are typically powered by...
  • Using Functions in Excel Objectives: Using Excel functions

    Using Functions in Excel Objectives: Using Excel functions

    A Function is a predefined worksheet formula. The advantage of . using a function: Saves time writing. ... ten? The Round Function changes the precise value of a number, not just its display ... which can be copied down the...
  • r dr Approximate bonding atomic radii for the

    r dr Approximate bonding atomic radii for the

    As we go , more coulombic attraction, no new energy level, more pull, smaller size. Sr < Ba < Cs. Arrange the following atoms in order of increasing. atomic radius: Sr, Ba, Cs . Ionization Energy: the minimum energy needed...
  • L.O recognise lines of symmetry TRUE FALSE L.O

    L.O recognise lines of symmetry TRUE FALSE L.O

    L.O recognise lines of symmetry TRUE FALSE L.O recognise lines of symmetry TRUE FALSE L.O recognise lines of symmetry TRUE FALSE L.O recognise lines of symmetry TRUE ...
  • 2013 NRCS/IPM Workshop Norm Leppla UF, IFAS, IPM

    2013 NRCS/IPM Workshop Norm Leppla UF, IFAS, IPM

    Featured Creatures provides in-depth profiles of insects, nematodes, arachnids and other organisms. The site is a cooperative venture of the University of Florida's Department of Entomology and Nematology and the Florida Department of Agriculture and Consumer Services' Division of Plant...
  • Data-based Decision Making - CCE

    Data-based Decision Making - CCE

    10:08 Data-Based Decision Making. 11:30 Lunch. 12:30 Data-Based Decision Making, continued. ... When working in small groups, give and take input ... Social/Academic Instructional Groups (SAIG) - Illinois . PBIS Network, Revised October 2009. Adapted from T. Scott, 2004.