Chapter 23

Chapter 23

Introduction to z/OS Basics Chapter 2B Parallel Sysplex 2009 IBM Corporation Chapter 2B Parallel Syslpex Objectives In this chapter you will learn to: Discuss a Sysplex Coupling Facility Describe a Parallel Sysplex Explain how Parallel Sysplex can achieve continuous availability Use dynamic workload balancing Explain the single system image Describe resource adjustment across Systems in a Sysplex Note to instructor : Some slides are animated - Use Power Point slide show Only ~ 20 slides to present the rest are extra 2

2009 IBM Corporation Chapter 2B Parallel Syslpex Basic v.s. Parallel Sysplex (SYStems comPLEX) September 1990, IBM debuted the SYSPLEX introducing XCF services allowing authorized applications to communicate with applications on the same or other systems using specialized links. BASIC A shared couple data set used between all the images holds control information and provides a mechanism for monitoring the status of the images Parallel This enhanced sysplex implementation provided the capability to use a a specialized LIC operating environment called the coupling facility control code (CFCC) offering speed and integrity to shared data. While a basic sysplex is an actual entity, with a defined name (the sysplex name), a parallel sysplex is more conceptual, that is a set of systems with in a sysplex that all have access to the same one or more coupling facilities *. * Described later in slides 3 2009 IBM Corporation

Chapter 2B Parallel Syslpex SYStems comPLEX or SYSPLEX 4 2009 IBM Corporation Chapter 2B Parallel Syslpex Sysplex Goal is a Single System Image 5 2009 IBM Corporation Chapter 2B Parallel Syslpex What a Sysplex can do for YOU It will address any of the following types of work: Large business problems that involve hundreds of end users, or deal with volumes of work that can be counted in millions of transactions per day. Work that consists of small work units, such as online transactions, or large

work units that can be subdivided into smaller work units, such as queries. Concurrent applications on different systems that need to directly access and update a single database without jeopardizing data integrity and security. 6 Provides reduced cost through: Cost effective processor technology IBM software licensing charges in Parallel Sysplex Continued use of large-system data processing skills without re-education Protection of z/OS application investments

The ability to manage a large number of systems more easily than other comparably performing multisystem environments 2009 IBM Corporation Chapter 2B Parallel Syslpex What else a Sysplex can do for YOU ! Platform for continuous availability so that applications can be available 24 hours a day, 7 days a week, 365 days a year Ability to do more work Greater capacity

Improved ability to manage response time Platform for further capacity and response time advances Greater flexibility Ability to mix levels of hardware and software Ability to dynamically add systems An easy path for incremental growth

Varied platforms for applications, including parallel, open, and client/server Workload balancing 7 2009 IBM Corporation Chapter 2B Parallel Syslpex Sysplex Anatomy A sysplex can include the following software and hardware: 1. z/OS Products include the cross-system coupling facility (XCF) component, which enables authorized programs in a sysplex to communicate with programs on the same MVS system or other MVS systems and the global resource serialization component, which serializes sysplex resources. 2. Signaling paths between z/OS systems - There must be at least two operational signaling paths (one inbound and one outbound path) between each of the zOS systems

- The signaling paths can be defined through: * Coupling facility list structures * ESCON or FICON channels operating in CTC mode * 3088 Multisystem Channel Communication Unit CF 3. Sysplex couple data set z/OS requires a DASD data set - Shared by all systems in the sysplex. - Sysplex couple data set, z/OS stores information related to the sysplex, systems, XCF groups, and their members. However, you can define a single system sysplex that does not require a sysplex couple data set. An XCF group is the set of related members that a multisystem application defines to XCF. A multisystem application can be an installation-defined program, an zOS component or subsystem, or a program product. 2009 IBM Corporation 8 Chapter 2B Parallel Syslpex Sysplex Anatomy continued 4. Common time reference

When the sysplex consists of multiple zOS systems running two or more processors, zOS requires that the processors be connected to the same Sysplex Timer. - zOS uses the Sysplex Timer to synchronize TOD clocks across systems. - For a multisystem sysplex defined on a single processor (under PR/SM or VM) the SIMETRID parameter in the CLOCKxx parmlib member must specify the simulated Sysplex Timer identifier to synchronize timings for the zOS systems. TOD Clocks: In a configuration with more than one CP, each CP may have a separate TOD clock (as in the zOS Parallel Sysplex) or more than one CP may share the same clock. To assist in the synchronization of the TOD clocks in a multisystem sysplex, a new architected 128-bit extended time-of-day clock is available. The extended clock format was required to provide the improved resolution necessary for the faster z10 processors as they become available. The extended time-of-day architecture ensures that when an application in a multisystem sysplex environment requests a TOD value, XCF will always return a clock value that is unique across the sysplex, regardless of the number of systems in the sysplex. 9 2009 IBM Corporation Chapter 2B Parallel Syslpex

Sysplex Coupling Facility - The glue for cross system data communication Within the Coupling Facility, storage is dynamically partitioned into structures. z/OS services manipulate data within the structures. Each of the following structures has a unique function: Cache structure: Supplies a mechanism called buffer invalidation to ensure consistency of cached data. The cache structure can also be used as a highspeed buffer for storing shared data with common read/write access. List structure: Enables authorized applications to share data that is organized in a set of lists, for implementing functions such as shared work queues and shared status information. Lock structure: Supplies shared and exclusive locking capability for serialization of shared resources down to a very small unit of data. IBM illustrations and diagrams symbolizes a Coupling Facility (CF) using a triangle 10

2009 IBM Corporation Chapter 2B Parallel Syslpex Exploiters of the Coupling Facility (CF) Authorized Applications Information Management System Database (IMS DB) Database 2 (DB2) Virtual Storage Access Method 11 2009 IBM Corporation Chapter 2B Parallel Syslpex z/OS Resource Sharing Earlier configurations

12 Later configurations 2009 IBM Corporation Chapter 2B Parallel Syslpex System z Sysplex Resource Sharing This is not to be confused with application data sharing This is sharing of physical system resources such as tape drives, catalogs, consoles This exploitation is built into z/OS Simplifies the management of the system 13 2009 IBM Corporation

Chapter 2B Parallel Syslpex Console Sharing in Sysplex 14 2009 IBM Corporation Chapter 2B Parallel Syslpex Resource Sharing via Coupling Facility 15 2009 IBM Corporation Chapter 2B Parallel Syslpex What is Parallel Sysplex Builds on the strength of System z servers by linking up to 32 images to create the industrys most powerful commercial processing clustered system Every cloned application can run on every image

Hardware and software can be maintained non-disruptively Innovative multi-system data-sharing technology Direct concurrent read/write access to shared data from all processing nodes No loss of data integrity No performance hit Transactions and queries can be distributed for parallel execution based on available capacity and not restricted to a single node 16 2009 IBM Corporation Chapter 2B Parallel Syslpex Parallel Sysplex 17 2009 IBM Corporation Chapter 2B Parallel Syslpex Parallel Sysplex

Coupling Facility Loosely coupled multiprocessing Hardware/software combination Requires: Applications Data sharing Locking zSeries Cross-system workload dispatching Synchronization of time for logging, etc. High-speed system coupling 11

12 11 1 10 9 6 2 3 8 4 7 1 9

3 8 12 10 2 4 7 5 6 5 Applications Sysplex Timers

ESCON/FICON* 9672 System Z9 Hardware: Coupling Facility Integrated Cluster Bus and ISC to provide high-speed links to CF Sysplex Timer Time Of Day clock synchronization Shared data Implemented in z/OS* and subsystems Workload Manager in z/OS Compatibility and exploitation in software subsystems, including IMS*, VSAM*, RACF*, VTAM*, JES2*, etc. - Rolling Maintenance System and Application Code

18 2009 IBM Corporation Chapter 2B Parallel Syslpex Continuous availability Within a parallel sysplex cluster, it is possible to construct an environment with no single point of failure Peer instances can of a failing subsystem can take over recovery responsibility for resources held by the failing instance Alternatively the failing subsystem can be automatically restarted on still healthy systems In a parallel sysplex it is possible that the loss of a server may be transparent to the application and the server workload redistributed automatically with little performance degradation Each system is still individual Software upgrades can be rolled through one system at a time on a sensible timescale for the business

19 2009 IBM Corporation Chapter 2B Parallel Syslpex Applications in a Parallel Sysplex Design goal of no application changes Benefits Scalability Integration of older applications with new workloads such as web serving With an existing sysplex there is very little infrastructure work required for a new application. The existing infrastructure may even be used without the need for a new server 20 2009 IBM Corporation

Chapter 2B Parallel Syslpex Policy Based Implementation Note: The External Time Reference (ETR) used by the different systems 21 2009 IBM Corporation Chapter 2B Parallel Syslpex Sysplex - Works with a Policy A policy is a set of rules and actions that systems in a sysplex are to follow when using certain zOS services. A policy allows zOS to manage systems specific resources in compliance with your system and resource requirements, but with little operator intervention. A policy can be set up to govern all systems in the sysplex or only selected. NOTE: You might need to define more than one policy to allow for varying workloads, configurations, or other installation requirements at different times. For example, you might need to define one policy for your prime shift operations and another

policy for other times (end of month). The following policies can be used to enhance systems management in a sysplex: - The coupling facility resource management (CFRM) policy allows you to define how zOS is to manage coupling facility resources. - The sysplex failure management (SFM) policy, allows you to define how MVS is to manage system failures, signaling connectivity failures, and PR/SM reconfiguration actions. - The workload management (WLM) policy allows you to define service goals for workloads. - The automatic restart management policy allows you to define how MVS is to manage automatic restarts of started tasks and batch jobs that are registered as elements of automatic restart management. - The system logger policy, (LOGR), allows you to define, update, or delete structure or log stream definitions. Although you can define more than one policy of each type (except for system logger) only one policy of each type can be active at a time. For system logger, there is only one LOGR policy in the sysplex. 22 2009 IBM Corporation Chapter 2B Parallel Syslpex Sysplex Timers use a new server timer protocol (STP)

The Server Time Protocol is a new server wide facility keeping all clocks synchronized - There is no additional hardware required as in the previous type configuration. 23 2009 IBM Corporation Chapter 2B Parallel Syslpex Intelligent Resource Director (IRD) Intelligent Resource Director is not actually a product or a system component; rather it is three separate but mutually supportive functions: WLM LPAR CPU Management - This provides a means to modify an LPAR weight to a higher value in order to move logical CPUs to that LPAR which is missing its service level goal. Dynamic Channel-path Management (DCM) - Dynamic Channel-path Management is designed to dynamically adjust the channel configuration in response to shifting workload patterns. - DCM is implemented by exploiting functions in software components, such as WLM, I/O, and Hardware Configuration. This supports DASD controller in order to have the system automatically manage the number of I/O paths available to Disk devices.

Channel Subsystem I/O Priority Queueing (CSS IOPQ) - This feature prioritizes I/O out through the channel and uses the SAP engine to create a queue 24 2009 IBM Corporation Chapter 2B Parallel Syslpex Prioritizing Work Across Images in a Server IRD PR/SM, IRD and WLM work together to ensure that the resources of the server are correctly balanced to enable work to complete within stated policy goals Needs More Resources Needs More Resources Linux 40

65 Weight z/VM PRODUCTION A WAS CICS DB2 60 35 Weight z/OS Intelligent Resource Director Processor Resource / Systems Manager System z LPAR Cluster A

25 Production B WAS CICS DB2 (low priority) Weight Weight 65 90 z/OS TESTING Batch 35 10

z/OS Intelligent Resource Director Processor Resource / Systems Manager System z LPAR Cluster B 2009 IBM Corporation Chapter 2B Parallel Syslpex z END Extra Slides 26 2009 IBM Corporation Chapter 2B Parallel Syslpex Display ofLINEthe CF Command output

94 RESPONSES NOT SHOWN SDSF ULOG CONSOLE KETTNER COMMAND INPUT ===> /D CF SCROLL ===> PAGE RESPONSE=SYSA IXL150I 09.32.33 DISPLAY CF 846 COUPLING FACILITY 002084.IBM.02.000000023A6A PARTITION: 0E CPCID: 00 CONTROL UNIT ID: FFFD NAMED CF1LPAR COUPLING FACILITY SPACE UTILIZATION ALLOCATED SPACE DUMP SPACE UTILIZATION STRUCTURES: 175872 K STRUCTURE DUMP TABLES: DUMP SPACE: 5120 K TABLE COUNT: 0 FREE SPACE: 799488 K

FREE DUMP SPACE: 5120 K TOTAL SPACE: 980480 K TOTAL DUMP SPACE: 5120 K MAX REQUESTED DUMP SPACE: 0K VOLATILE: YES STORAGE INCREMENT SIZE: 256 K CFLEVEL: 14 CFCC RELEASE 14.00, SERVICE LEVEL 00.11 BUILT ON 11/03/2004 AT 14:40:00 COUPLING FACILITY HAS ONLY SHARED PROCESSORS 0K CF REQUEST TIME ORDERING: REQUIRED AND ENABLED COUPLING FACILITY SPACE CONFIGURATION IN USE

FREE TOTAL CONTROL SPACE: 180992 K 799488 K 980480 K NON-CONTROL SPACE: 0K 0K 0K SENDER PATH PHYSICAL LOGICAL F1 ONLINE ONLINE ICP 27 CHANNEL TYPE 2009 IBM Corporation Chapter 2B Parallel Syslpex

Coupling Facility Summary Display Filter View Print Options Help ------------------------------------------------------------------------------SDSF ULOG CONSOLE KETTNER LINE COMMAND ISSUED COMMAND INPUT ===> /D XCF,CF SCROLL ===> PAGE RESPONSE=SYSA IXC361I 09.59.09 DISPLAY XCF 850 CFNAME COUPLING FACILITY CF1LPAR 002084.IBM.02.000000023A6A PARTITION: 0E CPCID: 00 CF2LPAR 002084.IBM.02.000000023A6A PARTITION: 0F CPCID: 00 Displays information about all CFs that are in the Policy 28 2009 IBM Corporation Chapter 2B Parallel Syslpex Display Filter View Print Options Help

------------------------------------------------------------------------------SDSF ULOG CONSOLE KETTNER LINE 56 RESPONSES NOT SHOWN COMMAND INPUT ===> SCROLL ===> PAGE /D XCF,COUPLE RESPONSE=SYSA IXC357I 10.06.58 DISPLAY XCF 854 SYSTEM SYSA DATA INTERVAL OPNOTIFY MAXMSG CLEANUP 85 90 1500 60 10 956 SSUM ACTION ISOLATE SSUM INTERVAL 60 10

RETRY CLASSLEN WEIGHT MAX SUPPORTED CFLEVEL: 14 MAX SUPPORTED SYSTEM-MANAGED PROCESS LEVEL: 14 CF REQUEST TIME ORDERING FUNCTION: INSTALLED SYSTEM NODE DESCRIPTOR: 002084.IBM.02.000000023A6A PARTITION: 0A CPCID: 00 SYSTEM IDENTIFIER: 3A6A2084 0A00021A COUPLEXX PARMLIB MEMBER USED AT IPL: COUPLEZ6 SYSPLEX COUPLE DATA SETS PRIMARY DSN: SYS1.XCFSCDS.PRI VOLSER: XCFCD1 DEVN: 9005 FORMAT TOD MAXSYSTEM MAXGROUP(PEAK) MAXMEMBER(PEAK) 12/07/1998 14:46:41 8 80 (41) 351 (9) ALTERNATE DSN: SYS1.XCFSCDS.ALT VOLSER: XCFCD2 DEVN: 9015 29

2009 IBM Corporation Chapter 2B Parallel Syslpex Display currently defined XCF Groups Display Filter View Print Options Help -----------------------------------------------------------------------------SDSF ULOG CONSOLE KETTNER LINE COMMAND ISSUED COMMAND INPUT ===> /D XCF,GROUP SCROLL ===> PAGE RESPONSE=SYSA IXC331I 10.14.41 DISPLAY XCF 856 GROUPS(SIZE): ATRRRS(4) COFVLFNO(4) DXRGROUP(3) EZBTCPCS(4) IDAVQUI0(4) IGWXSGIS(4) IRRXCF00(4) ISTCFS01(4) ISTXCF(4) IXCLO004(4) IXCLO005(4)

IXCLO007(4) IXCLO019(3) SYSATB01(2) SYSATB02(2) SYSATB03(2) SYSATB04(2) SYSBPX(4) SYSDAE(5) SYSENF(4) SYSGRS(4) SYSGRS2(1) SYSIEFTS(4) SYSIGW00(4) SYSIGW01(4) SYSIGW02(4) SYSIGW03(4) SYSIKJBC(4) SYSIOS01(4) SYSJES(4) SYSMCS(9) SYSMCS2(6) SYSRMF(4) SYSTTRC(4)

SYSWLM(4) WSCDBP0(4) WSC175(4) 30 2009 IBM Corporation Chapter 2B Parallel Syslpex Ring vs. Star Topology 31 2009 IBM Corporation Chapter 2B Parallel Syslpex GDPS A geographically dispersed parallel sysplex is the ultimate disaster recovery and continuous availability solution for a multi-site enterprise

Two sites up to 100 fiber kilometers apart may be connected for synchronous updates Asynchronous techniques may be used over this distance 32 2009 IBM Corporation Chapter 2B Parallel Syslpex Data Flow using Global Mirroring 33 2009 IBM Corporation Chapter 2B Parallel Syslpex GDPS Time

consistent data 34 X 2009 IBM Corporation Chapter 2B Parallel Syslpex Multiple Site Workload Site 1 Failure 35 2009 IBM Corporation Chapter 2B Parallel Syslpex Netview - GDPS 36 2009 IBM Corporation

Chapter 2B Parallel Syslpex GDPS Main Panel 37 2009 IBM Corporation Chapter 2B Parallel Syslpex GDPS Standard Actions Panel 38 2009 IBM Corporation Chapter 2B Parallel Syslpex Summary Reduce cost compared to previous offerings of comparable function and performance

Continuous availability even during change Dynamic addition and change Parallel sysplex builds on the strengths of the z/OS platform to bring even greater availability serviceability and reliability 39 2009 IBM Corporation Chapter 2B Parallel Syslpex CICS Sysplex (CICSplex) 40 2009 IBM Corporation Chapter 2B Parallel Syslpex DB2 Data Sharing with Group Buffer Pools

41 2009 IBM Corporation

Recently Viewed Presentations

  • Ehrlich/Medical Terminology for Health Professions, 7th edition

    Ehrlich/Medical Terminology for Health Professions, 7th edition

    Special Senses: The Eyes and Ears Chapter 11 * * * * * * * * * * * * * * * * * * * * * Overview of Structures, Combining Forms, and Functions of the Eyes and...
  • Chapter 1: Matter and Measurement

    Chapter 1: Matter and Measurement

    Chapter 1: Matter and Measurement 1.2 Classification of Matter States of Matter A. Solid (like your head) B. liquid (like your blood.) Gas (insert joke here.
  • National Curriculum - Larry Cuban on School Reform and ...

    National Curriculum - Larry Cuban on School Reform and ...

    National Curriculum By: Eric Knight, Andy Skunberg Alex Langner, Jason Aberson National Curriculum Essential Questions How does a national curriculum effect test scores? Culturally would a national curriculum work for the United States? Other than test scores, how do other...
  • Role Based Access Control Models

    Role Based Access Control Models

    Role Based Access Control Models ... we assumed the presence of a single security officer Normally have a small administrative team to mange RBAC Propagation of rights Management Model Management Model Proposed Administrative roles and permissions are disjoint from regular...
  • Cost Classification & Cvp Analysis

    Cost Classification & Cvp Analysis

    Cost-Volume-Profit (CVP) Analysis. CVP analysis is an analysis of the relationships among activity level, revenue, costs and profit. Classification of cost items into fixed and variable is paramount in CVP analysis.
  • Earth Science: Unit 1 - mrsciguy

    Earth Science: Unit 1 - mrsciguy

    Times New Roman Arial Narrow Wingdings Kids Lucida Handwriting CommonBullets Topo CorelEquation! 2.0 Equation Isolines Examples of isolines: Slide 3 Slide 4 Slide 5 Rules for Drawing Isolines: Slide 7 Slide 8 Slide 9 Slide 10 Visualizations of contour lines...
  • The Hamburger Model - pw010.k12.sd.us

    The Hamburger Model - pw010.k12.sd.us

    Although most people did not become rich, the Gold Rush started the settlement of the west coast. INSTRUCTIONS Using the given resources, research the Lewis and Clark Expedition. Write main ideas on note cards. Create a Power Point slide for...
  • Jones Hall Equal Employment Opportunity and Affirmative Action

    Jones Hall Equal Employment Opportunity and Affirmative Action

    Equal Employment Opportunity and Affirmative Action. Equal Employment Opportunity (EEO): Involves procedures that insure that all qualified persons regardless of race, color, national origin, sex, sexual orientation, gender identity and/or expression, disability, age, religion or veteran/military status (protected class) have...