Biochemical Methods Used in Proten Characterization

Biochemical Methods Used in Proten Characterization

BIOCHEMICAL METHODS USED IN PROTEN PURIFICATION AND CHARACTERIZATION Working with proteins Classical methods for separating proteins take advantage of properties that vary from one protein to the next 1. Crude extract (tissues or microbial cells) 2. Separation and purification of individual components 3. Protein characterization (molecular mass, amino acid composition and sequence)

Purification techniques 1. based on molecular size - dialysis and ultrafiltration - density gradient centrifugation - size-exclusion chromatography) 2. based on solubility of proteins - izoelectric precipitation - salting out 3. based on electric charge - ion-exchange

1. Separation procedures based on molecular size Dialysis and ultrafiltration Procedures, that separate proteins from small solutes. Pressure force Membrane enclosing the protein solution is semipermeable, allows the exchange water and small solutes (glucose, salts) pass through the membrane freely but protein do not.

Density gradient (zonal) centrifugation method for Test tube with sucrose gradient separation mixtures of proteins by centrifugation proteins in solution tend to sediment at

high centrifugal fields in continuous density gradient of sucrose macromolecule sediment down at its own rate the rate of sedimentation is determined by weight, density and shape of macromolecule

Separated and concentrated protein What is the columne chromatography Chromatographic column (plastic or glass) include a solid, porous material (matrix) supported inside stationary phase. A solution the mobile phase flows through the matrix

(stationary phase). The solution that pass out of the bottom is constantly replaced from a reservoir. The protein solution migrates through column. They are retarded to different degrees by their interactions with Size exclusion chromatography (gel filtration) Method uses porous particles to separate molecules of different size

mixture of proteins dissolved in suitable buffer, is allowed to flow by gravity down a column column is packed with beads of inert polymeric material (polysacchride agarose derivative, polyacrylamide derivative), Sephadex, Sephacryl

very large molecules cannot penetrate into the pores of the beads, the small molecules enter the pores large molecules are excluded and small proteins are retarded To calibrate the column, proteins A, B and C of known molecular weight are allowed to pass through the column. Their peak elution volumes are

plotted against the logarithm of the molecular weight. Molecular weight of unknown protein can be extrapolated 2. Separation procedures based on solubility Isoelectric precipitation Protein itself can be either positively or negatively charged overall due to the terminal amine -NH2 and carboxyl (-COOH) groups and the groups on the side chain. Protein is positively charged at low pH and negatively charged at high pH. The intermediate pH at which a protein molecule has a net charge of zero is called the isoelectric

point of that protein - pI Protein is the least soluble when the pH of the solution is at its isoelectric point. Different proteins have different pI values and can be separated by isoelectric precipitation Effect of pH and salt concentration on the solubility of protein Solubility is at a minimum at pH 5.2 to 5.3 Salting out Neutral salts influence the solubility of globular proteins.

Hhydrophilic amino acid interact with the molecules of H 2O, allow proteins to form hydrogen bonds with the surrounding water molecules. Increasing salt concentrationn: attracted of the water molecules by the salt ions, which decreases the number of water molecules available to interact with protein. Increasing ionic strength decrease solubility of a protein. In general: a) small proteins more soluble than large proteins b) the larger the number of charged side chains, the more soluble the protein c) proteins usually least soluble at their isoelectric points. Sufficiently high ionic strength completely precipitate a protein from

solution. 3. Separation procedures based on electric charge Methods depend on acid-base properties, determined by number and types of ionizable groups of amino acids. Each protein has distinctive acid-base properties related to amino acid composition. Ionizing side chain groups: R-COOH (Glu, Asp) imidazole (His) phenolic OH (Tyr)

-amino (Lys) guanidinyl (Arg) Electrophoretic methods negatively charged proteins move towards the anode positively charged proteins move towards the cathode Zone electrophoresis much simple much greater resolution require small sample Protein solution on the buffer (pH 8.6) is immobilized

in a solid support (inert material like cellulose acetate) Stripe of cellulose acetate Electrophoresis Major protein components separate into discrete zones Densitometer tracing density of zones is proportional to the amount of protein

Ion-exchange chromatography Material is synthetically prepared derivatives of cellulose diethylaminoethylcellulose (DEAE-cellulose) carboxymethylcellulose (CM-cellulose) DEAE-cellulose contains (+) charges (pH 7.0) anion exchanger CM-cellulose contains (-) charges (pH 7.0) cathion exchanger Example in figure is cation exchange chromatography -- column

packing beads have covalently attached negatively charged groups Negatively charged solutes move down the column more or less without sticking, so they elute first. Positively charged solutes bind, and the higher the positive charge on a molecule, the tighter it binds, so the later it elutes.

Example : At pH 7.5 of the mobile phase to be used on the columne, peptide A has a net charge of 3 (presence of more Glu a Asp residues). Peptide B has net charge +1. Which peptide would elute first from cation-exchange resin? Which peptide would elute first from anion-exchange resin? A cation-exchange resin has negative charges and binds positively charged molecules B will be retarded and A will elute first An anion-exchange resin has positive charge and binds negatively charged molecules A will be retarded B will elute first Afinity chromatography

Ligand specifically recognized by the protein of interest is covalently attached to the column material (Agarose, sephadex, derivatives of cellulose, or other polymers can be used as the matrix). Example: immunoaffinity chromatography: an antibody specific for a protein is immobilized on the column and used to affinity purify the specific protein.

Buffers containing a high concentration of salts and/or low pH are often used to disrupt the noncovalent interactions between antibodies and antigen. A denaturing agent, such as 8 M urea, will also break the interaction by altering the configuration of the Gel electrophoresis Gel electrophoresis is a method that separates macromolecules (proteins, nucleic acids) on the basis of size, and electric charge. Polyacryl amide or agarose gels are stabilizing media. SDS (sodium dodecyl sulfate) ionic surfactant, anionic substance. Anions of SDS bind to peptide chain and protein is negatively charged,

moves to anode. RecA protein of Escherichia coli Estimating protein molecular weight from SDS gel electrophoresis a) Diagram of a stained SDS gel: standards of known molecular weight (lane 1) and pure protein of unknown M.W. in lane 2 b) "standard curve" (calibration) to relate M.W. to mobility on THIS GEL Thank you for your attention

Recently Viewed Presentations

  • Welcome to Youth Leadership Gregory Phillips, Youth Leadership

    Welcome to Youth Leadership Gregory Phillips, Youth Leadership

    Through its member clubs, Toastmasters International helps men and women learn the arts of speaking, listening and thinking - vital skills that promote self-actualization, enhance leadership, foster human understanding and contribute to the betterment of mankind. ... Example: Who owns...
  • Mapping Guided Pathways Through the Core Curriculum

    Mapping Guided Pathways Through the Core Curriculum

    District-wide faculty/student services participation. Link. guided pathways to the core curriculum. Discuss. ways to ensure student learning. The 4 "pillars" of Guided Pathways * Mapping pathways -- beginning with the end in mind to student end goals. ...
  • Work Ethic: - Laurel County

    Work Ethic: - Laurel County

    Work Ethic: Start a K-W-L chart on YOUR paper. Brainstorm Time. Listen to directions!! How an employee shows their employer they are worth their paycheck? Work Ethic. A good work ethic is an attitude that combines hard work, good performance...
  • Module 1 Overview Context Content Area: Descriptive Epidemiology

    Module 1 Overview Context Content Area: Descriptive Epidemiology

    On September 10, 2001 Atta and Al-Omari were photographed by a Fast Green ATM located in the parking lot of Uno's Restaurant, 280 Maine Mall Road, South Portland, Maine. (This is the ATM photograph issued by the FBI.) ... Grant...
  • Acute Lymphoblastic Leukemia Posters and Abstracts from San

    Acute Lymphoblastic Leukemia Posters and Abstracts from San

    BLAST Study. Design. 1. and Follow-Up. 2. Open-label, single-arm phase 2 study. Pts (N=116, age ≥18 years with BCP-ALL in first or later hematologic CR and with persistent or recurrent MRD≥10-3 after a minimum of 3 cycles of intensive chemotherapy)...
  • New Business Models for Independent Schools

    New Business Models for Independent Schools

    New Business Models for Independent Schools Marc Frankel, Ph.D. - Senior Consultant, Triangle Associates (MO) Cynthia Berkshire - Trustee, Wildwood School (CA)
  • Particle Swarm Optimisation Representations for ... - Victoria

    Particle Swarm Optimisation Representations for ... - Victoria

    NMA_CFS [1] algorithm: Genetic Algorithm to do simultaneous C + FS. Niching, local search techniques. Variable length . centroid . representation for variable . K crossover difficulties. Tested on datasets with small #features (up to 30) and clusters (up to...
  • DoNow - Pequannock Township High School

    DoNow - Pequannock Township High School

    Hectopascals (hPa) Millibars (mb) Inches of mercury (in Hg) NOTE: not same as pressure in other sciences (chemistry) Atmospheric Pressure. Reported values are adjusted to sea level. Wind Speed and Direction. Speed measured in knots: 1 knot = 0.514 m/s.